Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning

نویسندگان

  • Hisao Ishibuchi
  • Yusuke Nojima
چکیده

This paper examines the interpretability-accuracy tradeoff in fuzzy rule-based classifiers using a multiobjective fuzzy genetics-based machine learning (GBML) algorithm. Our GBML algorithm is a hybrid version of Michigan and Pittsburgh approaches, which is implemented in the framework of evolutionary multiobjective optimization (EMO). Each fuzzy rule is represented by its antecedent fuzzy sets as an integer string of fixed length. Each fuzzy rule-based classifier, which is a set of fuzzy rules, is represented as a concatenated integer string of variable length. Our GBML algorithm simultaneously maximizes the accuracy of rule sets and minimizes their complexity. The accuracy is measured by the number of correctly classified training patterns while the complexity is measured by the number of fuzzy rules and/or the total number of antecedent conditions of fuzzy rules. We examine the interpretability-accuracy tradeoff for training patterns through computational experiments on some benchmark data sets. A clear tradeoff structure is visualized for each data set. We also examine the interpretability-accuracy tradeoff for test patterns. Due to the overfitting to training patterns, a clear tradeoff structure is not always obtained in computational experiments for test patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding Simple Fuzzy Classification Systems with High Interpretability Through Multiobjective Rule Selection

In this paper, we demonstrate that simple fuzzy rule-based classification systems with high interpretability are obtained through multiobjective genetic rule selection. In our approach, first a prespecified number of candidate fuzzy rules are extracted from numerical data in a heuristic manner using rule evaluation criteria. Then multiobjective genetic rule selection is applied to the extracted...

متن کامل

Discussions on Interpretability of Fuzzy Systems using Simple Examples

Two conflicting goals are often involved in the design of fuzzy rule-based systems: Accuracy maximization and interpretability maximization. A number of approaches have been proposed for finding a fuzzy rule-based system with a good accuracy-interpretability tradeoff. Formulation of the accuracy maximization is usually straightforward in each application area of fuzzy rule-based systems such as...

متن کامل

Rule Base and Inference System Cooperative Learning of Mamdani Fuzzy Systems with Multiobjective Genetic Algorithms

In this paper, we present an evolutionary multiobjective learning model achieving positive synergy between the Inference System and the Rule Base in order to obtain simpler, more compact and still accurate linguistic fuzzy models by learning fuzzy inference operators together with Rule Base. The Multiobjective Evolutionary Algorithm proposed generates a set of Fuzzy Rule Based Systems with diff...

متن کامل

Handling High Dimensionality and Interpretability-Accuracy Trade-Off Issues in Evolutionary Multiobjective Fuzzy Classifiers

Fuzzy systems are capable to model the inherent uncertainties in real world problems and implement human decision making. In this paper two issues related to fuzzy systems development are addressed and solutions are proposed and implemented. First issue is related to the high dimensional data sets. Such kinds of data sets lead to explode the search space of generated rules and results into dete...

متن کامل

Cooperation between the Inference System and the Rule Base by Using Multiobjective Genetic Algorithms

This paper presents an evolutionary Multiobjective learning model achieving positive synergy between the Inference System and the Rule Base in order to obtain simpler and still accurate linguistic fuzzy models by learning fuzzy inference operators and applying rule selection. The Fuzzy Rule Based Systems obtained in this way, have a better trade-off between interpretability and accuracy in ling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2007